

Enhancing urban regeneration and spatial justice with Nature-Based Solution: Nature-based solutions for improving efficiency in urban settlements. A model for its measurement FEDERICA CICALESE* AND ISIDORO FASOLINO Department of Civil Engineering, University of Salerno *fcicalese@unisa.it

European Union-funded Project

What are Nature-based Solutions (NbS)?

Nature-based Solutions are "solutions inspired and supported by nature that are cost-effective, provide simultaneous environmental, social and economic benefits and help build resilience. Such solutions introduce a greater quantity and variety of nature and natural features and processes into cities, landscapes and seas through systemic, locally adapted and resource-efficient interventions"

(EC, 2022)

Evaluating the performance of NbS

NbS	Measure
Green areas	Permeability $P = \frac{G_p + \phi_s G_s}{G}$
Rain Garden	Rainfall interception $Ri = \sum_{i=1}^{N} \left(1 - e^{-kw_i L_i \Omega_i} \right) \cdot p_i$
Street trees Natural green shelters	Shading $S = \sum_{i=1}^{N} \left(1 - e^{-k_i L_i \Omega_i} \right) \cdot p_i$
Green barriers	Acoustic and visual insulation $I = \sum_{i=1}^{N} \rho_i v_{i w} e^{-\tau d_{i\perp w}}$

Parameters	Description	
i	ith element of vegetation	
Ν	Number of vegetation elements	
G	Lot area	
Gi	Area occupied by <i>i</i>	
Gp	Permeable area	
Gs	Semipermeable area	
φ_s	Permeability coefficient	
pi = Gi/G	Fraction of G occupied by <i>i</i>	
Si	Number of stems	
Ω_i	Clumping factor	
$v_{i w}$	Volume of linear green elements parallel to w	
$ ho_i$	Vegetation density	
$d_{i\perp w}$	Vegetation distance from w	
L_i	Leaf area index	
k _i	Extinction coefficient for direct radiation	
kw _i	Extinction coefficient for rainfall interception	
τ	Insulation effect at increasing $d_{i\perp w}$	

